
F Fermi National Accelerator Laboratory

FERMILAB-Pub-98/195

Transverse Beam Stability with “Electron Lens”

A. Burov, V. Danilov and V. Shiltsev

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

June 1998

Submitted to Physical Review E

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy



Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of

their employees, makes any warranty, expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any speci�c commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein do not necessarily state or reect

those of the United States Government or any agency thereof.

Distribution

Approved for public release; further dissemination unlimited.



Transverse Beam Stability with “Electron Lens”

A. Burov∗, V. Danilov∗, V. Shiltsev
Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

(July 6, 1998)

This article is devoted to stability of the antiproton beam
interacting with an electron beam in an “electron lens” setup
for beam-beam compensation in the Tevatron collider. Elec-
tron space charge forces cause transverse “head-tail” coupling
within antiproton bunch which may lead to a transverse mode
coupling instability (TMCI). We present a theory, analytical
studies and numerical simulations of this effect. An estimate
of threshold longitudinal magnetic field necessary to avoid the
instability is given. Dependence of the threshold on electron
and antiproton beam parameters is studied.

41.75.Lx, 29.27.Bd

I. INTRODUCTION

Proton and antiproton beams in the Tevatron collider
interact via their electromagnetic forces at two collision
points B0 and D0, and at numerous locations along sep-
arated orbits in the same vacuum chamber where they
near miss each other. Such an interaction causes beta-
tron oscillation tune shift and the tune spread in both
beams. The tune shift and the tune spread are suppos-
edly much larger in the antiproton beam than in the pro-
ton one, because of several times larger proton intensity,
and can reach values of about 0.01-0.02 in the Tevatron
luminosity upgrade project TEV33 [1]. These effects are
expected to be a problem for the machine operation if
uncorrected. Compensation of the beam-beam effects in
the Tevatron with use of high current, low energy elec-
tron beam was proposed in Refs. [2], [3]. The electron
beam travels in the direction opposite to the antipro-
ton beam and interacts with an antiproton bunch via its
space charge forces. The proton beam has to be sepa-
rated from the electron and antiproton beams. Modi-
fications of the proposal are 1) the “electron lens” with
modulated current which is supposed to provide different
linear defocusing forces for different antiproton bunches
(the bunch spacing is τ=132 ns in the TEV33) and, there-
fore, equalize their betatron frequencies which are not
naturally equal due to proton-antiproton interaction in
numerous parasitic crossings along the ring; and 2) the
“electron compressor”, essentially nonlinear but DC elec-
tron lens to compensate (in average) the non-linear fo-
cusing of antiprotons due to proton beam.

The electron beam setup to be installed away from the
Tevatron proton-antiproton interaction points at B0 and
D0 and could look much like an “electron cooler” (see,
e.g. [4]), except electrons collide with antiprotons. Neg-

ative tune shift of antiprotons (p̄s) due to round electron
beam is equal to [3]

ξex,y ≈ −
βx,y
4π

2(1 + βe)JeLerp̄
evea2

eγp̄
, (1)

here rp̄ = e2/(Mp̄c
2) ≈ 1.53 · 10−18m is the (anti)proton

classical radius, γp̄ is relativistic antiproton factor,
Je, Le, ae, and ve = cβe are electron beam current,
length, radius and velocity, respectively, βx,y is the beta
function at the set-up location (x for horizontal, y for
vertical). For example, Le = 2 m long set-up with
Je = 1.5A current of 10kV electrons (βe = 0.2) installed
at βx=100m can shift the horizontal tune of the 1TeV an-
tiprotons on ξex ≈ −9.1 · 10−3 if the electron beam radius
is ae = 1 mm. Strong longitudinal magnetic field plays a
significant role in maintaining stability of both electron
and antiproton beams [5]. It also suppresses the electron
beam current distribution distortions and, therefore, the
electron space charge force distortions [6].

Low energy electrons can create significant transverse
impedance comparable with intrinsic impedance of the
Tevatron ring, that can result in collective instabilities of
the antiproton bunch. The electron beam to be born on
an electron gun cathode, transported through the inter-
action region, and absorbed in the collector. Therefore,
each portion of electrons passes through p̄ beam only
once, and only short distance transverse wake fields are
of interest. The most important collective effect is simi-
lar to the ”strong head-tail” interaction, considered, e.g.,
in [7]. It is assumed that the Tevatron ring chromatic-
ity can be made close to zero, so as the increments of so
called “weak head-tail” [7] instability are negligible.

In this article we study “strong head-tail” instability in
the p̄ beam caused by wide band impedance due to elec-
tron beam. The phenomenon takes place if, for example,
the centroid of the bunch head collides off the electron
beam center. Electron-antiproton repulsion causes the
electron motion and, as the result, the electron beam ac-
quires a displacement to the moment when it interacts
with the tail of the p̄ bunch. Thus, the impact of the
electron beam on the following antiprotons depends on
transverse coordinate of preceding p̄s. The effect is sim-
ilar to what is observed in electron storage rings where
short range wake fields due to vacuum chamber disconti-
nuities can lead to transverse mode coupling instability
(TMCI) [7]. The TMCI in the electron rings limits the
maximum single bunch current. In our case, the source
of the coupling is the electron space charge which is a
basic mechanism for the beam-beam compensation and,
thus, can not be avoided. The way to counteract the in-
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stability is to increase the electron beam rigidity, to make
its motion during the collision smaller. Naturally it can
be done using strong longitudinal magnetic field in the
interaction region.

Theoretical analysis of the “head-tail” stability in two
mode model is presented in Section 2 of this article. In
Section 3 we analyze synchro-betatron modes of the an-
tiproton bunch motion. Section 4 is devoted to numerical
simulations of the p̄’s dynamics in the Tevatron with the
“electron lens”. Finally, a brief summary is given in Sec-
tion 5.

II. TWO MODE MODEL

A. Direct and Skew Wakes

Conventionally, the analysis of relativistic beam sta-
bility relies on the wake function concept, see, e.g., [7].
Electromagnetic fields excited in accelerator vacuum pipe
vary over transverse distances of about the pipe aperture
b, which is usually much larger than the beam radius a.
That allows to expand the perturbation on the dipole,
quadrupole, and higher order terms over a small param-
eter (a/b).

The situation is different for the case under study. The
electron beam space charge fields excited by antiprotons
have about the same transverse extent as the p̄ beam,
that complicates the analysis. However, the interaction
can be described by the conventional approach for a spe-
cific case when both p̄ and electron bunches are homoge-
neous and bounded by the same radius a = ae = ap̄. Now
electromagnetic wake fields have a simple radial struc-
ture, they can be easily calculated and used in the con-
ventional formalism of the wake functions.

To find the dipole wake function, let us consider a thin
antiproton slice with a charge q and offset ∆x traveling
through the electron beam. After interaction with the
slice, electrons acquire transverse velocity

vxe =
2eq∆x

a2(1 + βe)γemc
, (2)

where m is the electron mass. Such a kick causes trans-
verse Larmor oscillations in longitudinal magnetic field
B, and after time interval t, the resulted electron trans-
verse offsets are:

xe =
vxe
ωL

sin(ωLt); ye =
vxe
ωL

(
1− cos(ωLt)

)
, (3)

where ωL = eB/(γemc) stands for the Larmor frequency,
and γe = 1/

√
1− β2

e . One can see that originally hori-
zontal displacement ∆x resulted in both horizontal and
vertical displacements. Taking into account a possibility
of a vertical offset y, we conclude that antiprotons at the
distance s behind the slice will experience momentum
changes equal to

∆px(s) = −eqc
(
Wd(s)∆x−Ws(s)∆y

)
∆py(s) = −eq

c

(
Ws(s)∆x+Wd(s)∆y

)
(4)

where we introduced direct wake function Wd(s) and
skew Ws(s) wake function:

Wd(s) = W sin(ks), Ws(s) = W
(

1− cos(ks)
)
, (5)

Wd,s(s) = 0, if s ≤ 0, and

W =
4πneLe

(1 + βe)a2
, ne =

Je
πa2ve

, k =
ωL

(1 + βe)c
. (6)

Depending on the parameters, one or another of the
two wake functions (5) can give a dominant influence on
the antiproton beam stability. As we will show below,
the direct wake effects are suppressed if there are many
Larmor oscillations periods over the p̄ bunch length σs,
while the skew force impact decreases with increasing the
x− y detuning.

B. Mode Coupling

Let us write down single particle equations of motion
along the accelerator orbit:

d2x

dθ2
+ kx(θ)x = Fx(θ),

d2y

dθ2
+ ky(θ)y = Fy(θ) (7)

here θ = s/R = ω0t is azimuth coordinate, R is an aver-
age ring radius, and ω0 = c/R is the revolution frequency.
The accelerator focusing lattice is presented by terms
kx,y. The forces Fx,y(θ) are due to additional fields on
the antiproton orbit. Eqs.(7) can be presented in terms
of slow amplitudes X, Y determined as

x = X exp
(
− i
∫ θ dθ′R

βx(θ′)

)
+ c.c.

dx/dθ = −iX R

βx(θ)
exp

(
− i
∫ θ dθ′R

βx(θ′)

)
+ c.c.

(8)

and similar in y−direction. Here βx,y(θ) are horizontal
and vertical beta-functions. Assuming the forces Fx,y be-
ing localized within small azimuthal interval where beta
functions are βx,y, we get from Eqs.(8) the equations for
the amplitudes X, Y :

dX

dθ
=
iβx
2R

Fx exp(iνxθ)
dY

dθ
=
iβy
2R

Fy exp(iνyθ) (9)

where νx,y =
∫ π
−π

dθ′R
βx,y(θ′) are the betatron tunes.

For the typical parameters of the electron compres-
sor, the Larmor phase advance φL over the rms pbar
bunch length σs is very large. E.g., taking B = 10 kG,
βe = 0.2, σs = 30 cm, one gets φL = kσ ≈ 23 · 2π. As we
will estimate later, the fast oscillating terms in the wake
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forces (5) give insignificant effect in the slow amplitudes,
and we can limit our consideration with only step-like
term Ws(s) = W . Using the “hollow-beam” model [7]
which assumes the same synchrotron oscillation ampli-
tude for all particles, we get following expressions for the
forces:

Fx(θ) = −δP (θ)F
∫ |ψ|
−|ψ|

y(ψ′)dψ′,

Fy(θ) = δP (θ)F
∫ |ψ|
−|ψ|

x(ψ′)dψ′,

−π ≤ ψ ≤ π, F =
Wrp̄Np̄R

2πγp̄

(10)

where ψ is the synchrotron phase and δP (θ) is the pe-
riodic δ−function with

∫ π
−π δP (θ)dθ = 1. The equations

(9) can be solved with the substitution

d/dθ = ∂/∂θ + νs∂/∂ψ (11)

where νs is the synchrotron tune.
The result of the integration depends on the vicinity

of the synchrobetatron resonances νx ± νy + kνs = l,
k, l are integer numbers. If the number k of the nearest
sum resonance is high enough, then the influence of the
resonance can be neglected. It is equivalent to a drop of
the complex conjugated terms in (8). The solutions are
expanded now over the unperturbed synchrotron modes:

X = exp(iν̃xθ)
∞∑

m=−∞
xm exp(imψ)

Y exp(−iν̃xθ)
∞∑

n=−∞
yn exp(inψ)

(12)

where ν̃x,y stand for fractional parts of the tunes. Be-
low, these modes are referred as |xm〉, |yn〉. Eigenvectors
xm, yn ∝ exp(−iνθ) and eigenvalues ν to be found from
the following set of the algebraic equations:

xm = − Fβx
2R(ν̃x − ν +mνs)

∑
n

Cmnyn

yn =
Fβy

2R(ν̃y − ν + nνs)

∑
l

Cnlxl

Cmn =
∫ π

−π

dψ

2π

∫ |ψ|
−|ψ|

dψ′

2π
exp(−imψ + inψ′).

(13)

The matrix elements are presented below:

Cmn =
1

2π2n

(
1− (−1)n+m

n+m
+

+
1− (−1)n−m

n−m

)
forn 6= 0,±m

Cm0 = −1− (−1)m

π2m2
form 6= 0

Cmn = 0, forn = ±m 6= 0

C00 = 1/2

(14)

Generally, Eqs.(13) may have unstable solutions when
the coherent interaction ∝ F is strong enough to couple
the unperturbed synchrotron modes. There are possibil-
ities to couple a pair of modes which belong to the same
plane (vertical or horizontal) or to different planes. For
example, if νy < νx, then, with an increase of the inter-
action parameter F , the first pair of the same polarity
modes to couple is |y0〉 and |y1〉. The motion in x−plane
may be considered as a forced motion at the frequency
ν̃y, which makes the x−equation (13) independent on the
sought-for frequency ν. Substitution of the x−equation
(14) into the y−equation yields

(ν̃y − ν + nνs)yn + ανs
∑
mGnmym = 0

α = F2βxβy/(4R2∆ννs), Gnm =
∑
l CnlClm

(15)

where ∆ν = νx − νy. Neglecting the contribution of all
the modes apart from the coupled ones |y0〉, |y1〉 results
in a quadratic equation on the eigenfrequencies. The so-
lutions of the equation are real when following threshold
condition is satisfied:

α ≤ αS = (1/4 + 2/π2 − 4/π4)−1 ≈ 2.43 (16)

that leads to

F ≤ FS = 2R
√
αS∆ννs/(βxβy) ≈ 3.12R

√
∆ννs/(βxβy).

(17)

This condition can be also expressed in terms of threshold
magnetic field:

B ≥ Bth ≈ 1.3
eNp̄

√
ξxξy

a2
√

∆ννs
(18)

For ξx = ξy = 0.01, Np̄ = 6 · 1010, νs = 0.001,∆ν =
0.01, a = 1 mm it comes out Bth = 12 kG.

Other solutions of Eqs.(13) are associated with the cou-
pling of x and y modes. The most dangerous case is re-
alized in the vicinity of resonance νx +mνs = νy + nνs;
then the quadratic equation for the eigenfrequency is as
follows:

(ν − ν̃x −mνs)(ν − ν̃y − nνs) =
−F2βxβy

4R2
CmnCnm.

(19)
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The stability condition writes:

(ν̃x − ν̃y −mνs − nνs)2 ≥ (F2βxβy/R
2)CmnCnm. (20)

Apart from C00, all nonzero matrix elements Cmn (14)
change sign after the transposing, thus, the right hand
side of (20) is negative and the condition is satisfied.
Therefore, only |x0〉 − |y0〉 coupling can result in an in-
stability. To avoid it, the interaction constant F has to
be small enough:

F ≤ 2R|∆ν|/
√
βxβy. (21)

This stability condition is more strong than the previous
one (17) when |∆ν| ≤ αSνs. In this case, the stability
criterion is independent on the synchrotron tune.

The fast oscillating direct wake function Wd(s) (5)
gives the matrix elements suppressed as ∝ 1/(kσs). As
the result, the threshold value of the interaction param-
eter F for the direct instability FD occurs to be much
higher then the skew one FS :

FD/FS ' kσs
√
νs/∆ν � 1. (22)

C. Scaling with Electron Beam Radius

Let us consider the electron beam with radius larger
than the antiproton beam radius, ae � ap̄,. To find
out how the direct and skew wake functions scale with
the electron beam radius, we start with the continuity
equation for the electron media:

∂ρe
∂t

+ ~∇(ne~ve) = 0 (23)

where ne and ρe are the electron density and its per-
turbation, ~ve is the electron velocity. Dealing with the
antiproton slice of charge q and offset ∆x which causes
ρi and corresponding the electric field ~Ei, we get

ρi(x, y, s) =
∆xxq
r

dni
dr

δ(s)

~∇
∫
ds~Ei(s) = −4πe

∫
dsρi(s)∫

d~rni(r) = 1, r2 = x2 + y2

(24)

and all the vectors, including ~∇, are transverse two-
dimensional ones.

Just after the kick, the electron velocity ~ve(0) writes

~ve(0) = cre

∫
ds~Ei(s)/e. (25)

Then, the awaken electron velocity undergoes the Larmor
rotation:

~ve(t) = T̂ (t)~ve(0), (26)

with the rotation transformation matrix of

T̂ (t) =
(

cos(ωLt) − sin(ωLt)
sin(ωLt) cos(ωLt).

)
(27)

Collecting these equations altogether and denoting
~re(t) =

∫ t
0 dt~ve(t), it comes out

ρe = −ne~∇~ve(0) sin(ωLt)/ωL − ~re(t)~∇ne (28)

The first term in the right hand side of the last equa-
tion leads to the oscillating direct wake function. It is
determined by the electron density at the location of the
antiproton beam and does not influenced by the remote
boundary of the electron beam. So it may be concluded
that the oscillating direct wake does not depend on the
electron beam radius when the electron density is fixed.
Eq.(5) gives an estimate for this wake function.

The second term in Eq.(28) contains the non-
oscillating drift part ~re = ~ve(0) × ~ωL/ω2

L and, actually,
describes the constant part of the skew wake. Mostly,
the electron boundary contributes to this term as it is
∝ ~∇ne. To see its scaling with the electron beam ra-
dius ae, one note that the field of the dipole perturbation
drops quadratically with the radius Ei(~r) ∝ 1/r2. Conse-
quently, the constant wake function goes down the same
way

Ws ∝ ne/a2
e. (29)

Thus, the increase of the electron beam radius can be
used to suppress the skew instability.

III. MULTI-MODE ANALYSIS

The two mode model presented in previous Section al-
lowed to derive analytical formulae for the TMCI thresh-
old taking into account only constant skew component of
the wake force due to electron beam and just two coupling
modes. More general numerical algorithm for calculating
the mode coupling developed in Ref. [8] allows to avoid
such simplifications and consider many modes and gen-
eral wake form, and, important, deals with non-averaged
motion. For that the antiproton bunch is divided into
several radial and azimuthal parts in the synchrotron
phase space, and consequently, a series of synchrobeta-
tron modes can be seen. The wake force kick changes
the backward particles angles. While the rest of the ac-
celerator is presented by a linear transformation matrix
(rotation in phase space). Eigenvalues (eigentunes) of
the resulted transformation matrix can be calculated nu-
merically. Complexity of the calculations is squared the
number of modes, so, for calculations with MATHCad
software one has to limit the number.

We divide the bunch in 1 radial (i.e. the same syn-
chrotron oscillations amplitude for all particles) and 7
azimuthal parts for both vertical and horizontal degrees
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of freedom, so it is possible to see the behavior of the first
1 radial and 7 azimuthal synchrobetatron modes in hori-
zontal and vertical motion with taking into account their
coupling. Complete expressions for the linearized direct
and skew transverse wake functions Eq.(5) are used.

Numerical parameters used in these calculations are
Np̄ = 6 · 1010, the rms size of round Gaussian antiproton
beam is σp̄ = 1 mm, the longitudinal magnetic field is
equal to 10kG. Fig.(1) shows the eigentunes versus the
linear betatron tune shift ξe due to interaction with elec-
tron beam while the fractional part of the betatron tune
for the horizontal motion is equal to νx = 0.556 and for
the vertical one νy = .555, the synchrotron tune is .001,
therefore, so the betatron tunes difference is exactly the
synchrotron tune. If ξe = 0., then the eigenfrequencies of
the azimuthal modes are equal to νx,y+k ·νs, where inte-
ger k has 7 values in the range of −3, ...3 and represents
the number of modulation periods in the synchrotron
phase space. Some of the modes are coupling with in-
crease of ξe, real parts of their tunes Reν (see upper series
of curves in Fig.1) become equal, while imaginary parts
Imν become one negative and another positive. The lat-
ter evidently means instability in the motion. In our case,
the first merging of modes takes place at ξ ≈ .0017; the
next merging of higher modes occurs at ξ ≈ .0045, etc.

0.000 0.005 0.010
ξ 

0.547

0.549

0.551

0.553

0.555

0.557

0.559

0

Im 

Re ν

ν

0.005

FIG. 1. Eigenfrequencies(tunes) of the antiproton bunch
oscillation modes versus the antiproton betatron tune shift
due to electron beam ξe (horizontal axis). Vertical scale on
the left is for fractional part of the tunes Reν (upper series of
lines), the right side scale is for imaginary part of the tunes
Imν (lower series of lines).

Next Fig.2 shows the tune shift threshold ξe for the
first coupling modes versus the tune split in units of the
synchrotron tune ∆ν = (νx − νy) while the vertical tune
is equal to .555. The threshold grows linearly until ∆ν ≈
(2 − 2.5)νs and then is approximately proportional to√

∆ν - in a good agreement with the two mode model

formulae (18) and (21). Note, that completely adequate
consideration of the fast oscillating parts of the wakes
would require many more modes ∼ kσs ' 30− 100 to be
taken into account.

0.0 1.0 2.0 3.0 4.0 5.0 6.0
∆ ν ∗ 1000

0.0

0.1

0.2

0.3

0.4

0.5

ξ∗
10

0
FIG. 2. Threshold antiprotons tune shift ξe (vertical axis)

due to the electron beam versus the difference of antiproton
horizontal and vertical tunes ∆ν = νx − νy. B = 10 kG,
νs = 0.001, Np̄ = 6 · 1010.

IV. SIMULATIONS

A. The Code

Three dimensional numerical simulations of the ef-
fects have been done with ECWAKE code written in
FORTRAN. The p̄ beam is presented as a number
of macroparticles (typically in the range from M=128
to maximum 2048). The particles have equal charges
e∆Np̄ = eNp̄/M . Numerical procedure to generate the
longitudinal phase space distribution starts with pairs of
numbers (ti, ui), i = 1, ...,M uniformly distributed in a
unit circle, then the longitudinal position of i-th particle
τi and its derivative υi = dτi/(dt · νsω0) are derived as

(τi, υi) = L(ti, ui) ·

√
1− (1− t2i − u2

i )1/(1+µ)

t2i + u2
i

(30)

where 2L is maximum bunch length, and the pa-
rameter µ determines the bunch shape. The smoothed
density in longitudinal phase space is proportional to
(L2 − τ2 − υ2)µ, and corresponding line density is pro-
portional to (L2 − τ2)µ+1/2. Fig.3 shows an example of
the longitudinal distribution of 1024 particles generated
with use of Eq.(30) with µ = 1.5.
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FIG. 3. Longitudinal distribution of 1024 macroparticles
in antiproton bunch generated accordingly to Eq.(30) with
µ = 1.5. Dashed line is for (L2 − τ2)µ+1/2.

Initial distribution of particles transverse coordinates
and velocities does not play a big role in the development
of the subject instability, and usually we either assign
the same displacement to all particles or use 2D Gaus-
sian numbers for xi, yi, vxi, vyi (in latter case, unstable
motion starts from noise). During the simulation, the
longitudinal variables are update once per turn using a
rotation with angle 2πνs, while the horizontal and verti-
cal variables are rotated by 2πνxi and 2πνyi, respectively.
Generally, the transverse tunes are not the same for all
particles - instead, one can distribute them uniformly
with maximum deviation of ±δν around mean values of
νx,y.

At every turn the particles collide with an electron
beam, and, therefore, excite Larmor motion of the elec-
tron beam. In simulation, the electrons’ angular kick due
to antiprotons is used in linear approximation:

~∆θe =
~∆pe⊥

γemcβe
≈ −∆Np̄re

γeβeσ
2
p̄

(~rp̄ − ~re). (31)

where σp̄ is the rms size of round Gaussian antiproton
beam, re = 2.82 · 10−15 m is electron classical radius,
and vectors ~rp̄, ~re denote positions of antiproton slice and
electron beam centroid, respectively. Every such a kick
results in Larmor oscillations of electrons. Note, that due
to Gaussian distribution function, the kick (31) has no
numerical factor 2 as in Eq.(2) and σp̄ is used instead of
a.

Fig.4 demonstrates the electron beam displacement
xe, ye behind the only macroparticle at the p̄ bunch head
(at s = −30 cm) displaced in x−plane in longitudinal
field of B = 1,4 and 20 kG. One can see, that amplitude
and period of the Larmor oscillations are both inversely
proportional to B. Note, that the motion in y−plane has
non-zero mean component if the original displacement is
in x−plane (and vice versa) - that is a source of the skew
impedance, discussed in Section 2.
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FIG. 4. Electron beam motion due to displaced p̄ slice in
solenoid magnetic field of B =1,4 and 20 kG.

All preceding macroparticles contribute to the elec-
tron beam displacement which is seen by a a subsequent
macroparticle. Therefore, resulting angular kick due to
the electron beam depends on the macroparticle position
τ :

∆x′p̄(τ) = −4πξe
βx
· (xe(τ)− xp̄(τ)). (32)

with a similar formula for the y plane; ξe is given in
Eq.(1). At every turn we use standard fast algorithm
[9] for sorting the values τi so that τi ≤ τi+1. It is
based on “doubling strategy” and requires M log2 M op-
erations. Calculation of the kicks Eq.(32) needs accumu-
lation of Larmor perturbations of the electron beam to
obtain xe(τi) that is done with another fast algorithm
(of the order of M log2M operations) similar to phasor
technique described, e.g., in [7], [10]. The code allowed
to track all variables involved, e.g. coordinates of any
macroparticle and p̄ beam centroid coordinates, motion
of the electron beam parts, etc.

We have tested the code with a specific analytical
model of the TMCI with constant wake function where
the kick is equal to

∆x′i =
W0

M

∑
j≤i

xj.

If all macroparticles have the same synchrotron ampli-
tude (often called “hollow” beam model), then theory
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[11] predicts threshold value of W thr
0 ≈ 14νs for small

synchrotron tunes νs � 1 which does not depend on the
bunch length – and that is what we’ve revealed with our
code.

B. Simulation results

Fig.5 presents spectra of horizontal motion of the an-
tiproton bunch centroid over 16,384 turns. Several curves
correspond to solenoid field B while antiproton parame-
ters are the same: number of macroparticles M = 1024,
constant longitudinal charge distribution (30) with µ =
−1/2 and L = 70 cm, Np̄ = 6 · 1010, σp̄ = 0.7 mm, un-
perturbed lattice tunes are close to the Tevatron ones
(νx0, νy0) = (0.585, 0.575), nominal tune shift due to
electron beam ξex,y = ξe = −0.01, synchrotron tune
νs = 0.001, and no betatron tune spread δν = 0.
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FIG. 5. Antiproton oscillations spectra with different
solenoid field B = 18, 20, 40, 400 kG. νx = 0.585, νy = 0.575,
νs = 0.001, ξe = −0.01, δν = 0, Np̄ = 6·1010, p̄ beam σp̄ = 0.7
mm.

The wake field strength W from Eq.(6) is inversely pro-
portional to B, thus, the spectrum corresponding to the
highest B = 40T - see the lowest blue curve in Fig.5 - the
only strong line at νx ≈ νx0 + ξe ≈ 0.5644 and several
weak lines at shifted on integer number of synchrotron
tunes, in particular, the first upper synchrotron side-
band at νx + νs. Weaker magnetic field leads to stronger
wake because larger Larmor motion of electrons is exited.
As the result, synchrotron side-bands become stronger -
see violet and red curves in the Figure, corresponding to
B = 4T and 2T, respectively. Simultaneously, frequen-

cies of some modes, e.g., νx and νx+νs shift toward each
other. At the threshold value of Bthr ≈ 1.8T, these lines
merge - see the upper black spectra in Fig.5, the ampli-
tude of the motion becomes very high, and any further
decrease of B will lead to instability which develops over
less than 16,384 turns to unacceptably high amplitudes
for numerical tracking.

It is revealed, that although the p̄ bunch motion is
essentially two-dimensional (since the wake is 2D), the
instability starts in that plane where the original lattice
tune is closer to half integer ν = 1/2, e.g. in horizontal
plane for the example discussed above.
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FIG. 6. Threshold solenoid field Bthr vs tune shift
due to electrons |ξe| at different bunch populations
Np̄ = 1, 6, 10 · 1010. Focusing lattice tunes νx = 0.585,
νy = 0.575, synchrotron tune νs = 0.0012, maximum tune
spread δν = 0, the rms size of p̄ beam σp̄ = 0.7 mm.

Next Fig.6 shows the threshold strength of solenoidal
magnetic field Bthr vs. electron beam intensity pa-
rameter ξe for antiproton bunch population equal to
Np̄ = (1, 6, 10) · 1010 - lower, middle and upper curves,
respectively. We define the threshold as the value of B
which results in more than 10-fold increase of the initial
centroid betatron amplitude over the first 10,000 turns.
One can see, that the field is approximately proportional
to both ξe and Np̄ in accordance with theoretical predic-
tion Eq.(18).

Dependence of the threshold on the synchrotron tune
νs is depicted in Fig.7. Dots are simulation results with
νx = 0.585, νy = 0.575, ξe = −0.01, δν = 0.002, Np̄ =
6 · 1010, σp̄ = 0.7 mm. The solid line represents a fit
Bthr = 17.5[kG]/

√
νs/0.001 in line with the two-mode

prediction Eq.(18).
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FIG. 7. Threshold magnetic field vs synchrotron tunes νs.
Solid line is for Bthr = 12.4[kG]/

√
νs. νx = 0.585, νy = 0.575,

ξe = −0.01, δν = 0, Np̄ = 6 · 1010, σp̄ = 0.7 mm.
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FIG. 8. Contour plot of the TMCI threshold magnetic field
vs synchrotron tune νs and tune shift due to electrons |ξe|.

Contour plot of Bthr over range of synchrotron tunes
νs = 0.0002 − 0.002 and |ξe| = 0.002 − 0.02 is shown
in Fig.8 (νx = 0.585, νy = 0.575, other parameters
are the same as above). One can see that Bthr varies
from 12kG to 48kG over the parameter space. In or-
der to evaluate importance of the oscillation part of the

wakes Eq.5, we performed similar scan without constant
part of the skew wake, i.e. with Wd(s) = W sin(ks)
and Ws(s) = −W cos(ks) and found that about 5 times
smaller solenoid field is required for stability. It confirms
decisive role of the the constant part of skew wake that
is a basic assumption of the two-mode model in Section
II.
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FIG. 9. Threshold magnetic field vs horizontal tune νx.
Dashed line corresponds to Bthr ∝ 1/

√
|νx − νy|; νy = 0.575,

νs = 0.001, ξe = −0.01, δν = 0.0, Np̄ = 6 ·1010, σp̄ = 0.7 mm.

It is found that the TMCI threshold greatly depends on
operation point νx, νy. Fig.9 presents results of scanning
of the horizontal tune νx from 0.52 to 0.63 while the ver-
tical tune is νy = 0.575. In close vicinity of the coupling
resonance ∆ν = |νx − νy| ≤ 15νs the threshold mag-
netic field depends on νs approximately as ∝ 1/|∆ν|κ,
where 2/5 < κ < 1/2. Away from the resonance, the
best fit power is κ ≈ 1/5. The tune dependence on the
tune split is different from Eq.(33) if |∆ν| is more than
15νs ≈ 0.015. The threshold also goes up near half-
integer resonance νx → 0.5.

In order to compare with the two mode model, one can
fit Bthr in the form similar to Eq.(18):

Bthr ≈
0.95eNp̄ξe

σ2
p̄

√
|νx − νy|νs

=
17.5[kG] Np̄

6·1010 | ξe0.01 |

(σp̄[mm]
0.7

)2

√
νs

0.001
|∆ν|
0.01

, (33)

- see also dashed line in Fig.9. There is difference in
numerical factors between Eq.(33) and Eq.(18) which is
probably because of a) the kick (31) due to Gaussian
beam has no numerical factor 2 as in Eq.(2), and σp̄
is used instead of a; b) oscillating parts of the wake
forces are taken into account in simulations in contrast
to the two modes model; c) more than two modes play
role in the computer tracking because of large number
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of macroparticles. At the same time, there is an excel-
lent quantitative agreement with results of multi-mode
analysis presented in Fig.2.

Neither two-mode theory nor multi-mode analysis in
Sections II and III, respectively, deal with tune spread
in the p̄ bunch, though a general guess is that it has
to ease the instability. In numerical simulations pre-
sented in Fig.10, we tracked M = 256 macroparti-
cles each having slightly different vertical and horizontal
tunes spread in interval ±δν around their mean values
νx,y = (0.585, 0.575) - see upper curve in the Figure, and
νx,y = (0.595, 0.575) - see the lower curve. In both cases
the tune spread helps to stabilize the TMCI and, e.g.,
if δν ' |∆ν| then the required Bthr is 1.5-2 times less
than in the case of δν=0. We need to note, that while
macroparticles differ from each other by their longitudi-
nal positions, then the way we introduce the tune varia-
tion is equivalent to the tune spread along the bunch. In
the Tevatron it can be caused by direct space charge in
a bunched beam of p̄s. The corresponding tune spread is
about 0.001 at injection energy of 150 GeV, and, thus,
comparable with synchrotron tune νs ≈ 0.001 − 0.002,
but is negligible at the collision energy of 0.9-1 TeV as it
scales as ∝ 1/γp̄.
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FIG. 10. The TMCI threshold magnetic field vs max-
imum betatron tune spread δν in the antiproton beam.
∆ν = |νx−νy| = 0.585−0.575 = 0.01 for the upper curve; and
∆ν = 0.595 − 0.575 = 0.02 for the lower curve. Synchrotron
tune νs = 0.0012, tune shift due to electrons ξe = −0.01,
Np̄ = 6 · 1010, rms size of p̄ beam σp̄ = 0.7 mm.

Theoretical analysis made in Ref. [12] predicts the sig-
nificant suppression of the TMCI due to Landau damp-
ing, caused by the tune spread across the beam if the lat-

ter is comparable or larger than synchrotron tune. That
condition can take place in the Tevatron collider where
the spread is due to beam-beam interaction and the non-
linearity of focusing lattice. Correct macroparticle track-
ing would require many particles in each macro slice, and,
thus, a different code and presumably much more CPU
time. This is a subject of further work. With an exist-
ing code we can mimic an effect of decoherence caused
by the transverse tune spread, simply by introduction a
decrement of betatron oscillations δ. The resulting insta-
bility threshold can be described by a fit as Eq.33 if one
replaces νs ↔

√
ν2
s + δ2.

V. CONCLUSIONS.

We have considered “strong head-tail” instability of
the Tevatron antiproton bunch due to the beam-beam
compensation set-up. The “head-tail” interaction takes
place when electron beam is not rigid enough and can
be displaced transversely by the bunch head particles.
The resulting direct and skew wake forces act on the
“tail” particles and, thus, can lead to the instability.
We pursue three approaches to study the instability: a
simple two-mode coupling theoretical model, more so-
phisticated multi-mode analysis which requires numeri-
cal solution of eigenmode equations, and straightforward
macroparticle computer simulation. The results coincide
qualitatively and rather well quantitatively agree with
each other. For the parameters of the planning Teva-
tron beam-beam compensation experiment the p̄ bunch
intensity eNp̄ = 6 ·1010 and its rms size σp̄ = 0.7 mm, the
tune shift due to electron beam ξe = −0.01, the distance
to the coupling resonance ∆ν = |νx − νy| = 0.01, and
the synchrotron tune νs = 0.001, the instability takes
place if longitudinal magnetic field in the set-up is below
threshold of about Bthr = 17.5kG. Essential features of
the instability are:

1. the constant skew wake plays major role in the
mode coupling;

2. the threshold solenoid field Bthr is proportional to
the transverse charge density of the electron beam,
to the transverse charge density of the antiproton
beam, and inversely proportional to the product
ν

1/2
s |νx − νy|κ, κ ≈ 1/2 in vicinity of the coupling

resonance νx − νy = integer;

3. the tune spread comparable or larger than νs can
lead to substantial suppression of the instability.

Rough estimates have shown that having the electron
beam transverse size ae several times wider than the an-
tiproton rms beam size σp̄ results in lower threshold mag-
netic field Bthr ∝ (σp̄/ae)2.

We plan to continue investigations of the instability
in order to clear some inadequacies of the present stud-
ies. In particular, following effects have to be taken into
consideration:
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1. non-linear forces with general current distributions
in the electron and antiproton beams;

2. instability suppression due to betatron and syn-
chrotron tune spreads;

3. higher order transverse mode coupling.
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